Structural basis for dual specificity of yeast N-terminal amidase in the N-end rule pathway.
نویسندگان
چکیده
The first step of the hierarchically organized Arg/N-end rule pathway of protein degradation is deamidation of the N-terminal glutamine and asparagine residues of substrate proteins to glutamate and aspartate, respectively. These reactions are catalyzed by the N-terminal amidase (Nt-amidase) Nta1 in fungi such as Saccharomyces cerevisiae, and by the glutamine-specific Ntaq1 and asparagine-specific Ntan1 Nt-amidases in mammals. To investigate the dual specificity of yeast Nta1 (yNta1) and the importance of second-position residues in Asn/Gln-bearing N-terminal degradation signals (N-degrons), we determined crystal structures of yNta1 in the apo state and in complex with various N-degron peptides. Both an Asn-peptide and a Gln-peptide fit well into the hollow active site pocket of yNta1, with the catalytic triad located deeper inside the active site. Specific hydrogen bonds stabilize interactions between N-degron peptides and hydrophobic peripheral regions of the active site pocket. Key determinants for substrate recognition were identified and thereafter confirmed by using structure-based mutagenesis. We also measured affinities between yNta1 (wild-type and its mutants) and specific peptides, and determined KM and kcat for peptides of each type. Together, these results elucidate, in structural and mechanistic detail, specific deamidation mechanisms in the first step of the N-end rule pathway.
منابع مشابه
A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In both fungi and mammals, the tertiary destabilizing N-terminal residues asparagine and glutamine function through their conversion, by enzymatic deamidation, into the secondary destabilizing residues aspartate and glutamate, whose destabilizing activity requires their enzymatic conjugation to ...
متن کاملAltered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. N-terminal asparagine and glutamine are tertiary destabilizing residues, in that they are enzymatically deamidated to yield secondary destabilizing residues aspartate and glutamate, which are conjugated to arginine, a primary destabilizing residue. N-terminal arginine of a substrate protein is b...
متن کاملGlutamine-specific N-terminal amidase, a component of the N-end rule pathway.
Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar...
متن کاملMolecular basis of substrate selection by the N-end rule adaptor protein ClpS.
The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate...
متن کاملStructure and evolutionary conservation of the plant N-end rule pathway.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal amino acid residue. While some N-terminal residues result in metabolically stable proteins, other, so-called destabilizing residues, lead to rapid protein turnover. The N-end rule pathway, which mediates the recognition and degradation of proteins with N-terminal destabilizing residues, is present in all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 44 شماره
صفحات -
تاریخ انتشار 2016